求的精度,越来越专业加工越来越难。
时间到了八十年代,光刻机的主流光源开始使用高压汞灯,其波长为365n业界管这玩意叫~i-line。
九十年代初期,微米以下之后,高压汞灯所提供的356n长就显得很大了,因此krf激光器成了光刻机的主流光源,其产生的248n长的光源足够把晶圆生产线的线宽推进到纳米时代。
九十年代中期,随着晶圆生产线线宽的进一步降低,193n长的duv激光开始崭露头角,duv激光也是著名的arf准分子激光,包括治疗近视眼手术在内的多种跨行业工程应用都使用这种激光,相关激光发生器和光学镜片等技术都比较成熟。
在电子产业庆幸193n源由于应用范围极广导致研发成本降低的愉悦压根就没享受几天,光刻光源的缩短之旅直接被卡在193n法进步。
从九十年代中期开始,直到梁远偷渡之前,光刻机的光源一直维持在193n经接近二十年,可以说直到某人偷渡位面那一刻,全球所有主流手机、电脑、平板、超级计算机、显卡、路由器的主芯片仍旧是193n源光刻出来的,193n源成了人类信息时代超高速发展中第一块顽固不变的基石。
自1975年摩尔定律或者叫做摩尔预言成熟起,全球半导体产业沿着摩尔博士给出的这条科技大路一路狂奔了二十多年,直到二十世纪的末期才撞上了一道无法突破的铁壁~~193n光刻机光源在这个波长上卡了足有小二十年,英特在世纪之交被吐槽成牙膏厂只是光刻机技术停步不前时消费领域产生的一线反应而已。
自九十年代中期开始,科学家和电子产业界提出了各种超越193n方案,其中包括157n光,电子束投射(epl),离子投射(ipl)、euv和x光,几年的发展之后在世纪之交形成了几大技术阵营。
157n2:每家大型光刻公司都在研究,但唯独东洋尼康第一个推出了达到商用标准的产品。