地分布在天空的所有方向上。这表明它们起源于太阳系之外,否则的话,我们可以预料它们要集中于行星轨道面上。这种均匀分布还表明,这些伽玛射线源要么处于银河系中离我们相当近的地方,要么在它的外围的宇宙学距离之处,否则它们还会集中于星系的平面之上。在后者的情形下,产生伽玛射线爆所需的能量实在太大,微小的黑洞根本提供不起。但是如果这些源以星系的尺度衡量和我们邻近,那就可能是正在爆发的黑洞。我非常希望这种情形成真,但是我必须承认,还可以用其他方式来解释伽玛射线爆,例如中子星的碰撞。未来几年的观测,尤其是像ligo这样的引力波探测器,应该能使我们发现伽玛射线爆的起源。
即使对太初黑洞的探索证明是否定的,并且看来可能会是这样,仍然给了我们关于极早期宇宙的重要信息。如果早期宇宙曾经是紊乱或无规的,或者物质的压力很低,可以预料到会产生比我们对伽玛射线背景所作的观测所设下的极限更多的太初黑洞。只有当早期宇宙是非常光滑和均匀的,并有很高的压力,人们才能解释为何没有观测到太初黑洞。
黑洞辐射的思想是第一个这样的例子,它以基本的方式依赖于本世纪两个伟大理论即广义相对论和量子力学所作的预言。因为它推翻了已有的观点,所以一开始就引起了许多反对:“黑洞怎么会辐射东西出来?”当我在牛津附近的卢瑟福——阿普顿实验室的一次会议上,第一次宣布我的计算结果时,受到了普遍质疑。我讲演结束后,会议主席、伦敦国王学院的约翰·泰勒宣布这一切都是毫无意义的。他甚至为此还写了一篇论文。然而,最终包括约翰·泰勒在内的大部分人都得出结论:如果我们关于广义相对论和量子力学的其他观念是正确的,黑洞必须像热体那样辐射。这样,即使我们还不能找到一个太初黑洞,大家相当普遍地同意,如果找到的话,它必须正在发射出大量的伽玛射线和x射线。
黑洞辐射的存在看来意味着,引力坍缩不像我们曾经认为的那样是最终的、不可