(以秒作单位)加上往北离开皮卡迪里的距离(以光秒为单位)。
图
将一个事件的四座标作为在所谓的时空的四维空间中指定其位置的手段经常是有助的。对我来说,摹想三维空间已经足够困难!然而很容易画出二维空间图,例如地球的表面。(地球的表面是两维的,因为它上面的点的位置可以用两个座标,例如纬度和经度来确定。)通常我将使用二维图,向上增加的方向是时间,水平方向是其中的一个空间座标。不管另外两个空间座标,或者有时用透视法将其中一个表示出来。(这些被称为时空图,如图所示。)例如,在图中时间是向上的,并以年作单位,而沿着从太阳到α-半人马座连线的距离在水平方向上以英哩来测量。太阳和α-半人马座通过时空的途径是由图中的左边和右边的垂直线来表示。从太阳发出的光线沿着对角线走,并且要花4年的时间才能从太阳走到α-半人马座。
正如我们已经看到的,麦克斯韦方程预言,不管光源的速度如何,光速应该是一样的,这已被精密的测量所证实。这样,如果有一个光脉冲从一特定的空间的点在一特定的时刻发出,在时间的进程中,它就会以光球面的形式发散开来,而光球面的形状和大小与源的速度无关。在100万分之1秒后,光就散开成一个半径为300米的球面;100万分之2秒后,半径变成600米;等等。这正如同将一块石头扔到池塘里,水表面的涟漪向四周散开一样,涟漪以圆周的形式散开并越变越大。如果将三维模型设想为包括二维的池塘水面和一维时间,这些扩大的水波的圆圈就画出一个圆锥,其顶点即为石头击到水面的地方和时间(图)。类似地,从一个事件散开的光在四维的时空里形成了一个三维的圆锥,这个圆锥称为事件的未来光锥。以同样的方法可以画出另一个称之为过去光锥的圆锥,它表示所有可以用一光脉冲传播到该事件的事件的集合(图)。
图
对于给定的事件p,人们可以将宇宙中的其他事件分成三类。从事